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Abstract: Linear fractional stable motion is an example of a self-similar stationary
increments stochastic process exhibiting both long-range dependence and heavy-tails. In
this paper we propose methods that are able to estimate simultaneously the self-similarity
parameter and the tail parameter. These methods are based on the asymptotic behavior of
the so-called “empirical structure function”, a statistic which resembles a sample moment
of the process. We show and use the fact that the rate of growth of the empirical structure
function is determined by the Hurst parameter and the tail index. We test the methods
on simulated data and apply them to network traffic and solar flares data.
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1 Introduction
Empirical time series which appear in many applications display both the “Joseph” and
“Noah” effects, as coined by Mandelbrot (see e.g. Mandelbrot (1997)). While the Joseph
effect refers to long-range dependence of the increments, the Noah effect refers to their
high variability as expressed by power law tails of the marginal distributions. Fractional
Brownian motion is an example of a process exhibiting only the Joseph effect: its incre-
ments are long-range dependent but with normal marginal distribution. On the other
hand, the α-stable Lévy process with 0 < α < 2 exhibits only the Noah effect: it has
independent but heavy-tailed increments with tail index equal to α.

An example of a stochastic process which exhibits both effects is the linear fractional
stable motion (LFSM). LFSM can be defined through the stochastic integral

X(t) = 1
CH,α

∫
R

(
(t − u)H−1/α

+ − (−u)H−1/α
+

)
M(du), t ∈ R, (1)

where α ∈ (0, 2), 0 < H < 1, (x)+ = max(x, 0) and where M is a random noise. More
specifically, M is an α-stable random measure on R with Lebesgue control measure λ and
skewness β. This means first that M is an independently scattered random measure: if
A1 and A2 are disjoint sets, then M(A1) and M(A2) are independent random variables.
Secondly, for all sets A such that λ(A) < ∞, M(A) has an α-stable distribution with scale
parameter λ(A)1/α and skewness parameter β, i.e. M(A) ∼ Sα(λ(A)1/α, β, 0). If α = 1 we
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assume β = 0, but for other values of α, M is allowed to be skewed. In general, a random
variable X has an α-stable distribution with index of stability α ∈ (0, 2), scale parameter
σ ∈ (0, ∞), skewness parameter β ∈ [−1, 1] and shift parameter µ ∈ R, denoted by
X ∼ Sα(σ, β, µ) if its characteristic function has the following form

E exp{iζX} =

exp
{
−σα|ζ|α

(
1 − iβsign(ζ) tan απ

2 + iζµ
)}

, if α ̸= 1,

exp
{
−σ|ζ|

(
1 − iβ 2

π
sign(ζ) ln |ζ| + iζµ

)}
, if α = 1,

ζ ∈ R.

If the constant CH,α in the representation (1) is chosen such that the scaling parameter
of X(1) equals 1, i.e.

CH,α =
(∫

R

∣∣∣(1 − u)H−1/α
+ − (−u)H−1/α

+

∣∣∣α du
)1/α

.

then the process is called standard LFSM. The stationary sequence Yi = X(i) − X(i − 1),
i ∈ N is referred to as the linear fractional stable noise. The process LFSM {X(t)} is
H-self-similar with stationary increments, that is for every a > 0, process {X(at), t ∈ R}
has the same finite dimensional distributions as {aHX(t), t ∈ R} (see (Samorodnitsky
& Taqqu 1994, Proposition 7.4.2)). Setting α = 2 in (1) reduces the LFSM to the
fractional Brownian motion. By analogy to this process, the case H > 1/α is referred
to as a long-range dependence and the case H < 1/α as negative dependence. Since
the second moment and thus the correlation function of X(t) is infinite, there are other
ways to get a feeling for the dependence structure of the process. This is usually done
using codifferences (Samorodnitsky & Taqqu (1994)) but see also a more recent approach
described in Magdziarz (2009).

For each t, X(t) has a strictly stable distribution with stable index α. The parameter
α governs the tail behavior of the marginal distributions in the sense that for each t,
X(t) is heavy-tailed with tail index α, i.e. P (|X(t)| > x) = L(x)x−α where L is a slowly
varying function, that is, L(ax)/L(x) → 1 as |x| → ∞, for every a > 0. This implies, in
particular, that E|X(t)|q = ∞ for q ≥ α. See Samorodnitsky & Taqqu (1994) for more
details.

Since LFSM combines both heavy-tails and long-range dependence it provides a rich
modeling potential (see e.g. Willinger et al. (1998)). It is therefore important to have
methods of estimating the parameters α and H. Standard estimators of the Hurst ex-
ponent H usually assume that the underlying process has finite variance and this makes
them inappropriate for the case of LFSM. Also, estimators of the tail index are known
to behave well mostly on independent or weakly dependent samples (see e.g. Embrechts
et al. (1997)). It is therefore necessary to construct an estimator of both parameters that
takes into account the special structure of the LFSM.

A wavelet based estimator of the parameter H for the LFSM has been proposed
in Stoev & Taqqu (2003) (see also Pipiras et al. (2007) and Stoev & Taqqu (2005)).
The authors define two estimators both of which are shown to be strongly consistent
and asymptotically normal under some conditions. These estimators do not require the
knowledge of α. In Ayache & Hamonier (2012), a wavelet-based estimator of α has been
defined. However this method requires one to know the H value first. For the more general
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model of linear multifractional stable motion, estimators of α and the Hurst functional
parameter H(·) have also been developed (see Ayache & Hamonier (2013)).

In this paper we develop methods that are able to simultaneously estimate both pa-
rameters α and H. The methods are based on the asymptotic behavior of the so-called
“empirical structure function” which is essentially a q-th order sample moment of |X(t)|.
Asymptotic properties of the empirical structure function have been investigated before
in the context of multifractal theory (Heyde & Sly (2008)). Our method is based on the
fact that the rate of growth of the empirical structure function depends on the parameters
H and α. We derive a limit in probability which identifies the relation between the two
parameters. This is then used to define the so-called “scaling function” which provides
an alternative method of estimation. We test the methods on simulated data in order to
compare their performance.

2 Empirical structure function and the scaling func-
tion

Suppose {X(t)} is LFSM that is sampled in a regularly spaced time instants, X(δ), X(2δ),
. . . , X(nδ). For simplicity of notation, we assume δ = 1, so we have a sample X1, . . . , Xn.
Based on a sample, the empirical structure function can be defined as follows:

Sq(n, t) = 1
⌊n/t⌋

⌊n/t⌋∑
i=1

∣∣∣Xi⌊t⌋ − X(i−1)⌊t⌋

∣∣∣q , (2)

where q ∈ R and 1 ≤ t ≤ n. We thus partition the data into consecutive blocks of length
⌊t⌋, sum each block and take the power q of the absolute value of the sum. Finally, we
average over all ⌊n/t⌋ blocks. For this reason, (2) is sometimes called “partition function”.
Notice that for t = 1 one gets the usual empirical q-th absolute moment. Because of the
stationary increments, it is natural to use the empirical structure function as an estimator
of the q-th absolute moment of X(t).

Asymptotic properties of Sq(n, t) have been considered in the context of multifractality
detection (Grahovac et al. (2014), Grahovac & Leonenko (2014), Heyde (2009)), and in
particular for LFSM in Heyde & Sly (2008). We go over the methodology from Grahovac
et al. (2014) to establish the asymptotic properties. Instead of keeping t fixed, we take
it to be of the form t = ns for some s ∈ (0, 1), which allows the blocks to grow as the
sample size increases

Sq(n, ns) = 1
n1−s

n1−s∑
i=1

∣∣∣Xins − X(i−1)ns

∣∣∣q .

Since s > 0, Sq(n, ns) will diverge as n → ∞. We are interested in the rate of divergence
of this statistic measured as a power of n. We can get this by considering the limiting
behavior of ln Sq(n, ns)/ ln n. One can think of the limiting value as the value of the
smallest power of n needed to normalize the empirical structure function in such a way
that it will converge to some random variable not identically equal to zero.
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In our analysis we will also include a range of negative q values. Although this may
seem unusual, finite negative order moments provide additional information on the value
of the Hurst parameter. In particular, for q ∈ (−1, 0), stable-distributed random variables
have finite q-th absolute moment since their probability density function is bounded (see
e.g. Zolotarev (1986)).

The main argument in establishing asymptotic properties of the empirical structure
function is based on the following lemma. A similar result has been proved in Heyde &
Sly (2008), yet we prove it here with much simpler arguments.

Lemma 1. Suppose Xi, i ∈ N is a discretely observed sample from LFSM {X(t)} such
that X(i) = Xi. Then for q ≥ α,

ln (∑n
i=1 |Xi − Xi−1|q)

ln n
P→ q

α
,

as n → ∞, where P→ stands for convergence in probability.

Proof. Let ε > 0. Denote by Yi = Xi − Xi−1 and notice this is a stationary sequence.
Suppose δ < ε/(q − α) and define

Zi,n = Yi1
(
|Yi| ≤ n

1
α

+δ
)

, i = 1, . . . , n, n ∈ N.

It follows from Karamata’s theorem (Embrechts et al. (1997)) that for arbitrary r > α

E|Zi,n|r =
∫ ∞

0
P (|Zi,n|r > x)dx =

∫ nr( 1
α +δ)

0
P (|Yi|r > x)dx

=
∫ nr( 1

α +δ)

0
L(x

1
r )x− α

r dx ≤ C1L(n
1
α

+δ)nr( 1
α

+δ)(− α
r

+1)

= C1L(n
1
α

+δ)n
r
α

−1+δ(r−α)

(3)

Next, notice that

P
(

max
i=1,...,n

|Yi| > n
1
α

+δ
)

≤
n∑

i=1
P
(
|Yi| > n

1
α

+δ
)

≤ C2n
L(n 1

α
+δ)

(n 1
α

+δ)α
≤ C2

L(n 1
α

+δ)
nαδ

.

Now by partitioning on the event

{Yi = Zi,n, i = 1, . . . , n} =
{
Yi ≤ n

1
α

+δ, i = 1, . . . , n
}

=
{

max
i=1,...,n

|Yi| ≤ n
1
α

+δ
}

,
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using Markov’s inequality and (3) we have

P

(
ln (∑n

i=1 |Yi|q)
ln n

>
q

α
+ ε

)
= P

(
n∑

i=1
|Yi|q > n

q
α

+ε

)

≤ P

(
n∑

i=1
|Yi|q > n

q
α

+ε, max
i=1,...,n

|Yi| ≤ n
1
α

+δ

)
+ P

(
max

i=1,...,n
|Yi| > n

1
α

+δ
)

≤ P

(
n∑

i=1
|Zi,n|q > n

q
α

+ε

)
+ P

(
max

i=1,...,n
|Yi| > n

1
α

+δ
)

≤ nE |Zi,n|q

n
q
α

+ε
+ C2

L(n 1
α

+δ)
nαδ

≤ n

n
q
α

+ε
C1L(n

1
α

+δ)n
q
α

−1+δ(q−α)) + C2
L(n 1

α
+δ)

nαδ

≤ C1L(n
1
α

+δ)nδ(q−α)−ε + C2
L(n 1

α
+δ)

nαδ
→ 0,

as n → ∞, since δ(q−α)−ε < 0 and L(x) is slowly varying, thus bounded by any positive
power of x.

For the reverse inequality notice that since Yi is a stationary strictly α-stable sequence
corresponding to a dissipative flow it follows by Theorem 4.8 in Samorodnitsky (2004)
that maxi=1,...,n |Yi|/n1/α converges in distribution to some positive random variable. So
for any δ > 0,

P
(

max
i=1,...,n

|Yi| < n
1
α

−δ
)

→ 0, as n → ∞.

Now it follows that

P

(
ln (∑n

i=1 |Yi|q)
ln n

<
q

α
− ε

)
= P

(
n∑

i=1
|Yi|q < n

q
α

−ε

)

≤ P
(

max
i=1,...,n

|Yi| < n
1
α

− ε
q

)
→ 0,

as n → ∞ which proves the statement.

Theorem 1. Suppose Xi, i ∈ N is a discretely observed sample from LFSM {X(t)} such
that X(i) = Xi. Then for q > −1 and every s ∈ [0, 1]

ln Sq(n, ns)
ln n

P→ RH,α(q, s) :=

sqH, if q < α,

s
(
1 + qH − q

α

)
+ q

α
− 1, if q ≥ α,

(4)

as n → ∞.

Proof. By H-self-similarity of LFSM it follows that

Sq(n, ns) d= nsqH

n1−s

n1−s∑
i=1

|Xi − Xi−1|q . (5)

The sequence Xi − Xi−1, i ∈ N is a stationary linear fractional stable noise and thus it is
a stable mixed moving average which is known to be ergodic (see Cambanis et al. (1987),
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Pipiras & Taqqu (2002), Surgailis et al. (1993)). For q ∈ (−1, α), E|Xi − Xi−1|q < ∞, so
it follows by the ergodic theorem that

Sq(n, ns)
nsqH

→ E|X(1)|q a.s.

In particular,

ln n

(
ln Sq(n, ns)

ln n
− sqH

)
= ln Sq(n, ns) − ln nsqH → ln E|X(1)|q a.s.

which implies the statement of the theorem for q < α.
Now we consider the case q ≥ α. We have by (5) that

ln Sq(n, ns)
ln n

− s
(

1 + qH − q

α

)
−
(

q

α
− 1

)

=
(sqH − 1 + s) ln n + ln

(∑n1−s

i=1 |Xi − Xi−1|q
)

ln n
− s

(
1 + qH − q

α

)
−
(

q

α
− 1

)

=
ln
(∑n1−s

i=1 |Xi − Xi−1|q
)

ln n
− q

α
(1 − s)

=
ln
(∑n1−s

i=1 |Xi − Xi−1|q
)

ln n1−s
(1 − s) − q

α
(1 − s).

Since by Lemma 1

ln
(∑n1−s

i=1 |Xi − Xi−1|q
)

ln n1−s

P→ q

α
, as n → ∞,

it follows that

P

(∣∣∣∣∣ ln Sq(n, ns)
ln n

− s
(

1 + qH − q

α

)
−
(

q

α
− 1

)∣∣∣∣∣ > ε

)

= P

∣∣∣∣∣∣
ln
(∑n1−s

i=1 |Xi − Xi−1|q
)

ln n1−s
− q

α

∣∣∣∣∣∣ (1 − s) > ε

 → 0,

as n → ∞ and this proves the second case.

As it is clear from the theorem, the rate of growth of the empirical structure function
is heavily influenced by two parameters, namely H and α. This motivates the idea of
estimating these parameters from the structure function. We describe the method in the
next section, but first we establish results that will be the basis for another method of
estimation.

The second estimation method we propose relies on ideas presented in Grahovac et al.
(2014) and Grahovac & Leonenko (2014) where similar results were used to establish an
estimation method for the tail index of weakly dependent samples. It is clear from (4)



7

that ln Sq(n, ns)/ ln n should behave approximately linearly in s. It thus makes sense to
focus on the slope of the simple linear regression of ln Sq(n, ns)/ ln n on s.

Fixing q and taking 0 ≤ s1 < · · · < sN ≤ 1 we can form a set of N points

(si, ln Sq(n, nsi)/ ln n), i = 1, . . . , N.

Using the well known formula for the slope of the linear regression line, we define the
empirical scaling function (slope) based on these points to be

τ̂N,n(q) =
∑N

i=1 si
ln Sq(n,nsi )

ln n
− 1

N

∑N
i=1 si

∑N
j=1

ln Sq(n,nsj )
ln n∑N

i=1 (si)2 − 1
N

(∑N
i=1 si

)2 . (6)

The next theorem establishes the asymptotic properties of τ̂N,n.

Theorem 2. Suppose that the assumptions of Theorem 1 hold and fix s1, . . . , sN in (6).
Then, for every q > −1,

τ̂N,n(q) P→ τ∞
H,α(q) :=

Hq, if − 1 < q < α,(
H − 1

α

)
q + 1, if q ≥ α,

(7)

as n → ∞.

Proof. Fix q > −1 and let ε > 0, δ > 0 and

C =
N∑

i=1
(si)2 − 1

N

(
N∑

i=1
si

)2

> 0.

By Theorem 1, for each i = 1, . . . , N there exist n
(1)
i such that

P

(∣∣∣∣∣ ln Sq(n, nsi)
ln n

− RH,α(q, si)
∣∣∣∣∣ >

εC

2siN

)
<

δ

2N
, n ≥ n

(1)
i .

It follows then that for n ≥ n(1)
max := max{n

(1)
1 , . . . , n

(1)
N }

P

(∣∣∣∣∣
N∑

i=1
si

ln Sq(n, nsi)
ln n

−
N∑

i=1
siRH,α(q, si)

∣∣∣∣∣ >
εC

2

)

≤ P

(
N∑

i=1
si

∣∣∣∣∣ ln Sq(n, nsi)
ln n

− RH,α(q, si)
∣∣∣∣∣ >

εC

2

)

≤
N∑

i=1
P

(∣∣∣∣∣ ln Sq(n, nsi)
ln n

− RH,α(q, si)
∣∣∣∣∣ >

εC

2siN

)
<

δ

2
.

Similarly, for each i = 1, . . . , N there exist n
(2)
i such that

P

∣∣∣∣∣ ln Sq(n, nsi)
ln n

− RH,α(q, si)
∣∣∣∣∣ >

εC

2
(∑N

i=1 si

)
 <

δ

2N
, n ≥ n

(2)
i ,
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and for n ≥ n(2)
max := max{n

(2)
1 , . . . , n

(2)
N }

P

∣∣∣∣∣∣ 1
N

N∑
i=1

si

N∑
j=1

ln Sq(n, nsj )
ln n

− 1
N

N∑
i=1

si

N∑
j=1

RH,α(q, sj)

∣∣∣∣∣∣ >
εC

2


≤ P

 N∑
j=1

∣∣∣∣∣ ln Sq(n, nsj )
ln n

− RH,α(q, sj)
∣∣∣∣∣ >

NεC

2
(∑N

i=1 si

)


≤
N∑

j=1
P

∣∣∣∣∣ ln Sq(n, nsj )
ln n

− RH,α(q, sj)
∣∣∣∣∣ >

εC

2
(∑N

i=1 si

)
 <

δ

2
.

Finally then, for n ≥ max{n(1)
max, n(2)

max} it follows that

P


∣∣∣∣∣∣∣τ̂N,n(q) −

∑N
i=1 siRH,α(q, si) − 1

N

∑N
i=1 si

∑N
j=1 RH,α(q, sj)∑N

i=1 (si)2 − 1
N

(∑N
i=1 si

)2

∣∣∣∣∣∣∣ > ε


≤ P

 ∣∣∣∣∣
N∑

i=1
si

ln Sq(n, nsi)
ln n

−
N∑

i=1
siRH,α(q, si)

∣∣∣∣∣
+

∣∣∣∣∣∣ 1
N

N∑
i=1

si

N∑
j=1

ln Sq(n, nsj )
ln n

− 1
N

N∑
i=1

si

N∑
j=1

RH,α(q, sj)

∣∣∣∣∣∣ > εC


≤ P

(∣∣∣∣∣
N∑

i=1
si

ln Sq(n, nsi)
ln n

−
N∑

i=1
siRH,α(q, si)

∣∣∣∣∣ >
εC

2

)

+ P

∣∣∣∣∣∣ 1
N

N∑
i=1

si

N∑
j=1

ln Sq(n, nsj )
ln n

− 1
N

N∑
i=1

si

N∑
j=1

RH,α(q, sj)

∣∣∣∣∣∣ >
εC

2

 < δ,

and thus
τ̂N,n(q) P→

∑N
i=1 siRH,α(q, si) − 1

N

∑N
i=1 si

∑N
j=1 RH,α(q, sj)∑N

i=1 (si)2 − 1
N

(∑N
i=1 si

)2 .

It remains to show that the right hand side is exactly τ∞
H,α(q) from (7). Indeed, when

q < α we have
1
N

∑N
i=1 qHs2

i − 1
N2
∑N

i=1 si
∑N

j=1 qHsj

1
N

∑N
i=1 (si)2 − 1

N2

(∑N
i=1 si

)2 = Hq
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and if q ≥ α

1
N

∑N
i=1 si

((
1 + qH − q

α

)
si + q

α
− 1

)
− 1

N2
∑N

i=1 si
∑N

j=1

((
1 + qH − q

α

)
sj + q

α
− 1

)
1
N

∑N
i=1 (si)2 − 1

N2

(∑N
i=1 si

)2

=

(
1 + qH − q

α

)
1
N

∑N
i=1 s2

i +
(

q
α

− 1
)

1
N

∑N
i=1 si

1
N

∑N
i=1 (si)2 − 1

N2

(∑N
i=1 si

)2

−

(
1 + qH − q

α

)
1

N2

(∑N
i=1 si

)2
+
(

q
α

− 1
)

1
N

∑N
i=1 si

1
N

∑N
i=1 (si)2 − 1

N2

(∑N
i=1 si

)2

=
(

H − 1
α

)
q + 1 +

(
q
α

− 1
)

1
N

∑N
i=1 si −

(
q
α

− 1
)

1
N

∑N
i=1 si

1
N

∑N
i=1 (si)2 − 1

N2

(∑N
i=1 si

)2 =
(

H − 1
α

)
q + 1.

3 Estimation methods
Based on the results of the preceding section we now specify the estimation methods for
the parameters H and α.

Method M1 is based on the results of Theorem 1. By choosing points 0 ≤ s1 <
· · · < sN ≤ 1 and qj ∈ (−1, qmax), j = 1, . . . , M , based on the sample of length n we can
calculate {

ln Sqj
(n, nsi)

ln n
: i = 1, . . . , N, j = 1, . . . , M

}
. (8)

In simulations and examples below we choose qmax = 4 to cover the critical range. As
ln Sqj

(n, nsi)/ ln n is expected to behave as RH,α(qj, si) defined in (4), we define an estima-
tor for (α, H) by minimizing the difference between the two in the sense of the ordinary
least squares, i.e.

(Ĥ1, α̂1) = arg min
(H,α)∈(0,1)×(0,2)

N∑
i=1

M∑
j=1

(
ln Sqj

(n, nsi)
ln n

− RH,α(qj, si)
)2

. (9)

Although method M1 follows naturally from Theorem 1, it has a disadvantage of being
sensitive to the scale parameter of the data. Indeed, any scale parameter c would scale the
empirical structure function by a factor |c|q. On finite samples, this produces an additional
term ln |c|q/ ln n in Equation (9) that needs to be compensated with the intercept of RH,α.
To avoid this issue, we specify two other methods which are based only on the slope of
RH,α and are not affected by a scale parameter.

Method M2 is based on the empirical scaling function (6) and Theorem 2. In contrast
to M1, we proceed here in two steps. First, based on the data set (8) for each qj, j =
1, . . . , M we compute the empirical scaling function τ̂N,n(qj) as defined in (6). Since for
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large samples this converges to τ∞
H,α(qj) for each j, we define estimators based on the

scaling function

(Ĥ2, α̂2) = arg min
(H,α)∈(0,1)×(0,2)

M∑
j=1

(
τ̂N,n(qj) − τ∞

H,α(qj)
)2

. (10)

The shape of the asymptotic scaling function τ∞
H,α in (7) is shown in the Figure 1 for a

range of values of α and H. Figure 1a shows the long-range dependent case. As indicated
in (7), the scaling function is bilinear in q with the first part having the slope H. A break
occurs at α and the plot is linear again but now with the slope H − 1/α. In the negative
dependence case H < 1/α (Figure 1b), the second part has a negative slope.

-1 1 2 3 4
q

-0.5

0.5

1.0

ΤH ,Α
¥ HqL

H=0.9, Α=1.2

H=0.8, Α=1.3

H=0.7, Α=1.5

H=0.6, Α=1.7

(a) Case H > 1
α

-1 1 2 3 4
q

-2.0

-1.5

-1.0

-0.5

0.5

ΤH ,Α
¥ HqL

H=0.8, Α=0.6

H=0.6, Α=0.8

H=0.4, Α=1.1

H=0.2, Α=1.5

(b) Case H < 1
α

Figure 1: Asymptotic scaling function τ∞
H,α

Figure 2 shows the estimated scaling functions (dashed) for some of the H and α
values presented in Figure 1. The estimation is based on one sample path realization
of length 15784 (explained later). Here, and in every other example, si, i = 1, . . . , N in
(6) are chosen equidistantly in the interval [0.1, 0.9] with N = 23. Scaling function is
estimated at points qj chosen equidistantly in the interval [−1, 4] with step 0.1. On each
plot in Figure 2 the corresponding true scaling function is shown by a solid line. Although
the break is not sharp, one can notice the bilinear shape.

The slope of the first part (q < α) of the estimated scaling function corresponds to
H, the breakpoint corresponds to α and the slope of the second part (q > α) contains
information about both parameters H and α. In some examples, as well as in those in
Figure 2, the slope of the second part does not give the value H − 1/α very precisely,
although the first part and the breakpoint behave as expected from (7). The second part
corresponds to the rate of growth under infinite moments, which makes it a sensitive
quantity to measure. Moreover it depends on both parameters H and α. This can affect
the estimation even when there is an obvious bilinear shape. For this reason we provide
alternative estimation method which uses only the information from the first part of the
scaling function and the breakpoint.

Method M3 fits the following general continuous bilinear function to the empirical
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scaling function

ς(q) =

aq, if − 1 < q ≤ b,

cq + b(a − c), if q > b.
(11)

Here we are interested only in parameter a which corresponds to H and b which corre-
sponds to α. The estimators in method M3 are now defined as

(Ĥ3, α̂3, ĉ) = arg min
(a,b,c)∈(0,1)×(0,2)×R

M∑
j=1

(τ̂N,n(qj) − ς(qj))2 . (12)
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(a) H = 0.8, α = 1.3
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(b) H = 0.9, α = 1.2
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(c) H = 0.6, α = 0.8
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(d) H = 0.8, α = 0.6

Figure 2: Estimated scaling functions (dashed) with the corresponding τ∞
H,α

4 Simulation study
We use simulation to test the bias and variability of the estimators. We also compare the
methods to see which one provides the best results.

In order to simulate paths of LFSM we have used FFT (fast Fourier transform) based
algorithm described in Stoev & Taqqu (2004). All generated sample paths are of length
15784 and additional parameters of the generator are chosen to be m = 128 and M = 600.
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This makes m(M + 15784) to be a power of 2 and the algorithm uses FFT (see Stoev &
Taqqu (2004) for more details). In all cases we use symmetric α-stable LFSM and the
scale parameter of X(1) is set to 1.

Simulations were conducted as follows. We chose for α values 0.3, 0.7, 1, 1.3, 1.7 and
for H values 0.2, 0.4, 0.6, 0.8 which makes a total of 20 cases. For each case, 100 sample
paths of length 15784 have been simulated. For each sample we compute the estimates
(Ĥ1, α̂1), (α̂2, Ĥ2) and (α̂3, Ĥ3) corresponding to each of the methods. The mean bias and
root mean square error (RMSE) of each estimator have been computed for each case and
the results are shown in Table 1 and Table 2. We compare the methods by indicating the
better values in bold.

Table 1: Bias of the estimators based on 100 sample paths

H α Ĥ1 − H Ĥ2 − H Ĥ3 − H α̂1 − α α̂2 − α α̂3 − α

0.2

0.3 0.1076 0.1898 0.1888 0.0199 0.0124 -0.0089
0.7 0.0349 0.0472 0.0869 0.0325 0.0317 -0.0798

1 0.0250 -0.0162 0.0304 0.0396 0.0958 -0.1137
1.3 0.0227 -0.0377 0.0112 0.0590 0.1854 -0.1465
1.7 0.0266 0.0048 0.0014 0.1640 0.2253 -0.0950

0.4

0.3 -0.0129 0.0877 0.0876 0.0243 0.0167 -0.0062
0.7 -0.0208 -0.0208 0.0138 0.0456 0.0486 -0.0632

1 -0.0071 -0.0590 -0.0085 0.0543 0.1222 -0.1005
1.3 0.0071 -0.0533 -0.0053 0.0707 0.1951 -0.1265
1.7 0.0176 0.0040 0.0024 0.1572 0.2045 -0.0870

0.6

0.3 -0.1210 -0.0240 -0.0227 0.0295 0.0242 -0.0013
0.7 -0.0650 -0.0910 -0.0515 0.0627 0.0793 -0.0442

1 -0.0234 -0.0855 -0.0277 0.0663 0.1423 -0.0828
1.3 0.0064 -0.0432 -0.0033 0.0579 0.1546 -0.1174
1.7 0.0139 -0.0022 -0.0016 0.1395 0.1899 -0.0921

0.8

0.3 -0.2230 -0.1159 -0.1156 0.0360 0.0305 0.0030
0.7 -0.1109 -0.1507 -0.1195 0.0824 0.1097 -0.0098

1 -0.0309 -0.0883 -0.0513 0.0622 0.1334 -0.0360
1.3 0.0072 -0.0379 -0.0079 0.0276 0.1126 -0.1016
1.7 -0.0176 -0.0356 -0.0466 0.1626 0.2261 -0.0382
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Table 2: RMSE of the estimators based on 100 sample paths

H α Ĥ1 Ĥ2 Ĥ3 α̂1 α̂2 α̂3

0.2

0.3 0.2733 0.2537 0.2516 0.0416 0.0423 0.0318
0.7 0.1301 0.1155 0.1333 0.0866 0.1124 0.1104

1 0.0902 0.0899 0.0838 0.1133 0.2014 0.1513
1.3 0.0652 0.0833 0.0644 0.1461 0.2902 0.1903
1.7 0.0444 0.0432 0.0483 0.2238 0.2621 0.2030

0.4

0.3 0.2597 0.2000 0.1975 0.0454 0.0431 0.0307
0.7 0.1438 0.1148 0.1073 0.0952 0.1128 0.0940

1 0.0996 0.1167 0.0811 0.1257 0.2128 0.1385
1.3 0.0691 0.0970 0.0731 0.1607 0.2940 0.1820
1.7 0.0418 0.0432 0.0500 0.2266 0.2537 0.1815

0.6

0.3 0.2846 0.1965 0.1935 0.0503 0.0478 0.0320
0.7 0.1654 0.1465 0.1176 0.1095 0.1258 0.0828

1 0.1091 0.1292 0.0963 0.1390 0.2105 0.1268
1.3 0.0731 0.0958 0.0695 0.1592 0.2577 0.1517
1.7 0.0413 0.0469 0.0531 0.2206 0.2512 0.1775

0.8

0.3 0.3357 0.2264 0.2261 0.0566 0.0495 0.0313
0.7 0.1881 0.1859 0.1523 0.1288 0.1446 0.0612

1 0.1094 0.1350 0.1003 0.1415 0.1984 0.0916
1.3 0.0746 0.0939 0.0699 0.1461 0.2255 0.1363
1.7 0.0446 0.0563 0.0681 0.2305 0.2601 0.1541

When compared using the RMSE, it is clear from Table 2 that method M3 provides the
best results for both parameters. Table 1 indicates that M1 and M3 provide smaller bias
than M2, although the differences between the estimators are not substantial. Having in
mind the sensitivity of M1 to the scale parameter, we can definitely recommend method
M3 as the best one. The performance of method M3 is also shown in Figure 3. Mean
estimates based on the 100 samples are shown as points in the (H, α) plane and the
gridlines show the true value of the parameters. For each value of H the corresponding
points and gridline are shown with different colors. We also plot the function 1/H to
distinguish between long-range dependence (α > 1/H) and negative dependence (α <
1/H) case.

It can be seen from Figure 3 that the value of H does not seem to have a significant
influence on the estimation of the tail index α. However, the quality of the estimates of
H worsens as α takes smaller values. This can be explained from (4) since for small α,
the value of H has only a small impact on the shape of RH,α. One can see this also from
the shape of the scaling function (7). The scaling function contains information on H in
the slopes of the two parts of the broken line. When α is small, the first linear part is
short and the value 1/α dominates in the slope of the second part. This makes it hard to
estimate H in this case.
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Figure 3: Mean estimates of (Ĥ3, α̂3)
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All three methods can estimate both parameters α and H simultaneously. An estima-
tor of the tail index based on the asymptotic behavior of the scaling function for weakly
dependent sequences has been proposed in Grahovac et al. (2014). We find it interesting
to also study how an estimation of the tail index would behave if the dependence structure
were stronger and the parameter H measuring dependence is known. So we included in
the simulation the behavior of the estimators M2 and M3 when H is known. We also did
this for the estimators of H assuming α is known. In these cases (10) and (12) reduce to
the minimization of a univariate function.

When one of the parameters is known both methods M2 and M3 behave equally
well. Here we present only mean estimates of method M2 (Figure 4). Mean estimates
of α when H is known are shown in Figure 4a. Figure 4b shows a similar plot for the
estimated value of H assuming α known. In the case of estimation of α (Figure 4a), one
sees that estimators based on the scaling function, like the one proposed in Grahovac
et al. (2014), can perform well even under complicated dependence structure.
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Figure 4: Mean estimates assuming one parameter is known

5 Real data applications
Empirical studies show that network traffic data can exhibit both self-similarity property
and heavy tails (see e.g. Leland et al. (1994), Willinger et al. (1998)). Many models have
been built explaining this behavior. In Karasaridis & Hatzinakos (2001), the authors
propose to model network traffic as a linear transformation of the totally skewed linear
fractional stable noise. Here we take one network traffic data set and assuming the data
is a realization of this model we estimate the self-similarity and tail parameters.

The data we analyze is the Ethernet trace recorded at the Bellcore Morristown Re-
search and Engineering facility (BC-Oct89Ext) (see Leland et al. (1994) and Leland &
Wilson (1991) for more details). It contains packet arrival times (in seconds) and number
of packets (in bytes). The original data has been modified by counting the packets in the
blocks of 1 second. We express the time series as the number of packets per time unit and
take only the first 25000 values, which is around 20% of all data (Figure 5a). The sample
mean has been subtracted according to the model and the estimated scaling function
(dotted) is shown in Figure 5b with the fitted bilinear function (11) (solid). The shape
indeed resembles the one characteristic for the LFSM and estimation with method M3
yields values Ĥ = 0.88 and α̂ = 1.33. The same data set has been analyzed in Karasaridis
& Hatzinakos (2001). The authors report the estimated value 0.8 for the Hurst parameter
and 1.63 for the tail index, which is in accordance with our analysis.
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Figure 5: BC-Oct89Ext trace

For the second illustration we analyze the solar flare X-ray data observed by GOES
satellite and publicly available at http://www.ngdc.noaa.gov/stp/solar/solarflares.
html. This type of data is considered to exhibit both self-similarity and heavy tails and
claimed to be modeled well with the LFSM (see Stanislavsky et al. (2009) and Weron et al.
(2005)). Assuming the data is indeed a realization of the mean shifted linear fractional
stable noise, we estimate the parameters H and α. The data contains the information
about the time of appearance and energy of the solar flares. We take the data in the
period from August, 1999 to December, 2003, aggregate the maximum flux values on a
daily basis and set the mean to 0, which provides 1405 data points. Figure 6a shows
the plot of the data and Figure 6b the estimated scaling function with the fitted bilinear
function (11). The estimated values of the parameters are Ĥ = 0.75 and α̂ = 1.56.
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Figure 6: Solar flare X-ray data
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